
*Corresponding author. Tel.: #886-62757575 ext. 63336; fax: #886-62766549.
E-mail address: raymond@mail.ncku.edu.tw (Y.-M. Huang).

Neurocomputing 37 (2001) 177}196

Competitive neural network to solve scheduling problems

Ruey-Maw Chen, Yueh-Min Huang*
Department of Engineering Science, National Cheng-Kung University, Tainan 701, Taiwan, ROC

Accepted 1 November 2000

Abstract

Most scheduling problems have been demonstrated to be NP-complete problems. The
Hop"eld neural network is commonly applied to obtain an optimal solution in various di!erent
scheduling applications, such as the traveling salesman problem (TSP), a typical discrete
combinatorial problem. Hop"eld neural networks, although providing rapid convergence to
the solution, require extensive e!ort to determine coe$cients. A competitive learning rule
provides a highly e!ective means of attaining a sound solution and can reduce the e!ort of
obtaining coe$cients. Restated, the competitive mechanism reduces the network complexity.
This important feature is applied to the Hop"eld neural network to derive a new technique, i.e.
the competitive Hop"eld neural network technique. This investigation employs the competitive
Hop"eld neural network to resolve a multiprocessor problem with no process migration, time
constraints (execution time and deadline), and limited resources. Simulation results demon-
strate that the competitive Hop"eld neural network imposed on the proposed energy function
ensures an appropriate approach to solving this class of scheduling problems. � 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Scheduling; Winner-take-all; Competitive learning; Hop"eld neural network

1. Introduction

Various applications, such as communications, routing, industrial control, opera-
tions research, and production planning employ scheduling concepts. Most problems
in these applications are con"rmed to be NP-complete or combinatorial problems.

0925-2312/01/$ - see front matter � 2001 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 5 - 2 3 1 2 (0 0) 0 0 3 4 4 - 1

This fact implies that an optimal solution for a large scheduling problem is rather time
consuming. The traveling salesman problem (TSP) is a typical NP-complete problem,
comprising a Hamiltonian cycle, which seeks a tour that has a minimum cost;
obtaining the optimal solution is very time consuming.
Various schemes have been developed for solving the scheduling problem. Linear

programming is a widely used scheme for determining the cost function based on the
speci"c scheduling problem. Willems and Rooda translated the job-shop scheduling
problem into a linear programming format, and then mapped it into an appropriate
neural network structure to obtain a solution [1]. Furthermore, Foo and Takefuji
employed integer linear programming neural networks to solve the scheduling prob-
lem by minimizing the total starting times of all jobs with a precedence constraint [2].
Meanwhile, Zhang, Yan, and Chang proposed a neural network method derived from
linear programming, in which preemptive jobs are scheduled based on their priorities
and deadline [3]. Additionally, Cardeira andMammeri investigated the multi-proces-
sor real-time scheduling by applying the k-out-of-N rule to a neural network [4].
Above investigations concentrated on the preemptive jobs (processes) executed on
multiple machines (multiprocessor) with job transfer permitted by applying a neural
network. Meanwhile, Hanada and Ohnishi [5] developed a parallel algorithm based
on a neural network for preemptive task scheduling problems by allowing for a task
transfer among machines. Park [6] embedded a classical local search heuristic
algorithm into the TSP optimization neural network. Most investigations have
constructed the energy functions for scheduling problems in terms of timing con-
straint, preemption, and migration features associated with the process. However, in
certain multiprocessor applications, task scheduling is not merely restricted to the
timing constraint. For instance, in [7], the display system on an advanced avionics
system may consist of two or more display processors. Each processor is responsible
for di!erent tasks involving timing constraints, but must not allow task migration
between processors. Additionally, tasks utilize shareable resources such as the triple-
channel display component for output display data, and the cooperative memory
component for data exchange. Tasks do not use the same resource simultaneously. To
facilitate the control of the pilot, all tasks must be properly scheduled to provide the
pilot with useful and timely information. Otherwise, danger is inevitable. This study
focuses mainly on resolving generic problems resembling the above situation. Re-
stated, this study investigates a multiprocessor scheduling problem involving preem-
ptive multitasking with timing and resource constraints, but not allowing migration.
Hop"eld and Tank led the way in using the neural network to solve optimization

problems. The basic operation of the Hop"eld neural networks [8] cooperatively
decides neuron output state information based on the state input information from
a community of neurons. Each neuron exchanges information with other neurons in
the network. The neurons apply this information to drive the network to achieve
convergence. Intrinsically, the operation of the Hop"eld neural network is a relax-
ation process that allows an energy function to reach an optimum solution with less
computation. The energy function used in the Hop"eld neural network is an appropri-
ate Lyapunov function. Many researchers have recently applied this method
to various applications. Gallone, Charpillet, and Alexandre presented a set of

178 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

non-preemptive tasks on a single machine, scheduled by applying the k-out-of-N rule
to the Hop"eld neural network [9]. Meanwhile, Nasrabadi and Choo used the
Hop"eld neural network for stereo vision correspondence [10]. Furthermore, Dixon,
Cole, and Belgard employed the Hop"eld neural network with mean-"eld annealing
to solve the shortest path problem in a communication network [11]. Similarly, our
previous work [7] also solved a multi-constraint schedule problem for a multiproces-
sor system using the Hop"eld neural network. Neural networks seldom include
competitive architecture into the network for solving the most scheduling problems.
Imposing a competitive learning mechanism to update the neuron states in the

Hop"eld neural network is referred to as a competitive Hop"eld neural network
(CHNN). A competitive learning rule can not only reduce the time consumed in
obtaining coe$cients but also obtains an e!ective and sound solution. CHNN has
been applied to various "elds, such as image clustering processes and speci"c image
segmentation. Chung et al. [12] proposed a competitive Hop"eld neural network for
polygonal approximation. Similarly, Lin et al. [13] also applied a competitive Hop-
"eld neural network to demonstrate the promising results in medical image segmenta-
tion. Furthermore, Uchiyama and Arbib [14] used competitive learning as an e$cient
method in color image segmentation application. The winner-take-all rule employed
by the competitive learning mechanism ensures that only one job is executed on
a dedicated processor at a certain time, forcing the 1-out-of-N constraint to be held.
The maximum neuron of the Hop"eld neural network is the activated neuron. The
monotonicity of the maximumneuron follows from the fact that the maximum neuron
is equivalent to a MacCulloch}Pitts neuron with a dynamic threshold [15].
Previously, we conducted a series of study to solve the scheduling problem [7].

A multiconstraint scheduling problem for a multiprocessor system was investigated,
in which the process is segmented into numerous subprocesses. Although these
subprocesses are preemptive, no process migration is allowed. The Hop"eld neural
network scheme and mean-"eld annealing technique are utilized to obtain the ad-
equate schedule [7]. Additionally, our earlier work [16] studied the convergence rates
corresponding to the cooling procedures of the mean-"eld annealing technique in
obtaining the scheduling results for the problem in [7]. That investigation proposed
a modi"ed cooling schedule to accelerate convergence rate for the investigated
problem. Furthermore, the fuzzy c-maens method used in clustering was applied to
investigate the scheduling problem, owing to the concept of the scheduling problem
resembling the clustering problem. Thus, a non-preemptive task scheduling problem
was resolved by incorporating the fuzzy c-maens strategy into the Hop"eld neural
network [17].
In light of above developments, this work investigates the job schedule problem of

a multiprocess on a multiprocessor that includes timing as well as resource con-
straints, via CHNN. An energy function designed to illustrate the timing and resource
constraints is proposed as in [7]. According to the CHNN, the scheduling problem is
considered a minimization of an energy function. Our results demonstrate that the
energy change is invariably negative when using formal mathematical derivations.
Therefore, HNN can be employed to obtain the weighting and threshold matrices,
then the competition process can be applied to obtain the solution.

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 179

Fig. 1. 3-D Hop"eld neural network.

The rest of this paper is organized as follows. Section 2 derives the corresponding
energy function according to the intrinsic constraints of the scheduling problem. After
this, Section 3 reviews the CHNN, and translates the derived energy functions to the
CHNN algorithm. Section 4 then gives mathematical proof of the convergence of the
simpli"ed energy function of CHNN. Next, Section 5 presents the simulation exam-
ples. Finally, Section 6 includes discussion and conclusions.

2. Energy function of the scheduling problem

Job-shop scheduling problems markedly di!er among cases. Our scheduling prob-
lem domain considers N jobs (or processes) and M machines (or processors). The
following assumptions are made regarding the problem domain, as discussed in our
previous study [7] and summarized herein. First, a job can be segmented and the
execution of each segment is preemptive. Second, di!erent segments of a job cannot be
assigned to di!erent machines, implying that no job migration is allowed between
machines. Third, the execution time of each job is predetermined. Additionally,
although calculating execution time is often di$cult, the execution time of each job
can be estimated by calculating the machine cycles or employing some heuristic rule
methods. The constraints imposed on the model proposed herein are a deadline and
an execution time for each job with limited available system resources. Moreover,
a resource instant is not permitted to migrate to any other machine. These assump-
tions and constraints are quite feasible, as demonstrated by the display system
depicted in the previous section. Given these assumptions, the preemptive processes
with deadlines and limited numbers of non-preemptive resources are interesting. This
work focuses on a multiprocess in a multiprocessor system and attempts to obtain
a set of schedules.
To resolve this scheduling problem, the energy function of the problemmust "rst be

derived. The energy function, which resembles the TSP, is transformed into a 3-D
HNN (Fig. 1); then the `optimizationa process searches for solutions satisfying a set of
constraints such that the energy function is minimized or maximized. Herein, schedul-
ing involves three variables: job, machine, and time. These three variables are depicted
in Fig. 1. The `xa-axis denotes the `joba variable, with i representing a speci"c job

180 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

with a range from 1 to N, the total number of jobs to be scheduled. Meanwhile, the
`ya-axis represents the `machinea variable, and each point j on the axis represents
a dedicated machine from 1 to M, the total number of machines to be operated.
Finally, the `za-axis denotes the `timea variable, with k representing a speci"c time,
which should be less than or equal to ¹, the deadline of the job. Based on this
de"nition of variables, a neuron indicated by state variable <

���
is de"ned as repres-

enting whether or not job i is executed on machine j at a certain time k. The activated
neuron<

���
"1 denotes that the job i is arranged to execute on machine j at the time

k; otherwise, <
���

"0. Notably, each <
���
corresponds to a neuron of the neural

network.
The derived energy function representing the neural network system is as follows:

E"

C
�
2

�
�
���

�
�
���

�
�
���

�
�

�����
����

<
���
<

����
#

C
�
2

�
�
���

�
�
���

�
�
���

�
�

�����
����

�
�

����

<
���
<

�����

#

C
�
2

�
�
���
�

�
�
���

�
�
���

<
���

!P
��

�
#

C
�
2

�
�
���

�
�
���
�

�
�
���

<
���

!1�
�

#

C
�
2

�
�
���

�
�
���

�
�
���

<
���

G�
���

H(G
���
)

#

C
�
2

�
�
���

�
�
���

�
�
���

�
�

�����
����

�
�

�����
����

�
�
���

<
���

R
��
<

�����
R

���
, (1)

where

G
���

"k!d
�
,

H(G
���
)"�

1 if G
���

'0,

0 if G
���

40,

and where C
�
, C

�
, C

�
, C

�
, C

�
, and C

�
refer to weighting factors, N denotes the total

number of processes to be scheduled, M is the total number of machines to be
operated, ¹ represents the maximum time quantum of a process, and F denotes the
quantity of shareable resources. These weighting factors,N,M,¹, and F, are assumed
to be positive constants herein.
The C

�
energy term con"nes a processor j to executing only one process, say i or i1,

at a certain time k. This energy term has a minimum value of zero when satisfying this
constraint. The C2 energy term indicates that a process migration is prohibited,
implying that process i runs on processor j or j1. This term also has a minimum value
of zero. In the C

�
energy term, P

�
denotes the total execution time required by process

i. This energy termmeans that the time consumed by process imust equal P
�
such that

� � <
���

"P
�
, i.e. this term becomes zero. Additionally, the C

�
energy term is

actually a supplemental constraint to prevent no process being executed on a speci"c
processor at a certain time. Thus, this energy item falls to a minimum of zero when

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 181

satisfying this constraint. The purpose of the C
�
energy term is to meet the deadline

requirement of each process i, where d
�
is the time limitation of process i andH(G

���
) is

the Heavside function. When a process is allocated with a run time that exceeds d, the
energy term will exceed zero, and the energy value will grow exponentially with the
associated time lag between d

�
and k. Since a processor prohibits simultaneous

resource preemption and resource sharing, the C
�
energy term is included to provide

this inhibition. In this term, F denotes the quantity of available resource instances,
while R

��
and Ri1s represent process i and i1 requests for resource s, respectively, as

shown in Table 2. R
��

"1 means that process i requires resource s, so Ri1s"1 for
process i1. Inspecting this energy term, when two distinct jobs are scheduled (say
<

���
"1 and <

�����
"1) to be executed at time k on di!erent machines j and j1, then

because machines j and j1 cannot utilize the same resource at time k, eitherR
��
or Ri1s

must be zero. Implying that this energy term value becomes zero. Based on the above
discussion, the derived energy function has a minimum value of zero when all
constraints are satis"ed.
Eq. (1) can be proved to be an appropriate Lyapunov function for the system under

discussion, as Section 4 illustrates. Therefore, the energy function leads to convergence
during network evolution, and competitive HNN can adequately solve scheduling
problems, as depicted in the following section.

3. Competitive HNN

In this section, the discussed scheduling problem and its energy function are
mapped onto the competitive HNN to obtain solutions as described.
Hop"eld and Tank originally proposed the neural network, HNN, in [18]. Essen-

tially, the HNN algorithm is based on the gradient technique, thus providing rapid
convergence. The HNN also provides potential for parallel implementation. This
scheme is basically an optimization-based relaxation process; in which the state
evolutions of the HNN are based on the energy decrease. Hence, the HNN is suitable
for solving optimization problems, and has been extensively used to solve various
optimization problems. Based on dynamic system theory, the Liapunov function [16]
[19] shown in Eq. (2), has veri"ed the existence of stable states of the network system.
This function is used in HNN to ensure the convergence of the network system.
Restated, the energy function representing the scheduling problem must be in the
same format as the Lyapunov function, as below:

E"!

1

2
�
	

�

�
�

�
�

�
�

�
�

<
	
�
=

	
����
<
���

#�
�

�
�

�
�

�
���
<
���
, (2)

where <
	
�
and <

���
denote the neuron states,=

	
����
represents the synaptic weight

indicating the interconnection strength among neurons, and �
���
is the threshold value

representing the bias input of the neuron. This neuron state has binary value 0 or 1, in
accordance with the problem requirements. Additionally, the HNN employs the
deterministic rule to update the neuron state change. This deterministic rule is

182 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

displayed in Eq. (3) below:

<��
���

"�
1 if Net

���
'0,

<�
���

if Net
���

"0,

0 if Net
���

(0,

(3)

where <�
	
�
and <��

	
�
denote the state values for the nth and (n#1)th iteration,

respectively. Meanwhile, Net
���
represents the total input or net value of the neuron

(i, j, k) obtained using the interconnection strength, =
	
����

, and the bias input,
�
���
displayed as follows:

Net
���

"!

�E

�<
���

"�
	

�

�
�

=
	
����
<
	
�

!�
���
. (4)

Instead of applying conventional deterministic rules to update neuron states,
competition among neurons is used to determine the winning neuron, i.e. the active
neuron. As discussed previously, applying a winner-take-all learning mechanism to
a Hop"eld neural network is frequently referred to as a competitive Hop"eld neural
network, CHNN. The concept of the competitive Hop"eld neural network resembles
the special case of the k-out-of-N rule proposed by Carderia and Mammeri [19].
Restated, the competitive Hop"eld neural network can be considered a 1-out-of-N
con"ne rule. The proposed competitive HNN neural network converges during
network evolutions, and Section 4 provides detailed proof of this convergence.
Since a processor can only execute one job at a time in subject scheduling problems,

omitting the C
�
and C

�
energy terms from the HNN energy function (Eq. (1)) yields

a simpli"ed energy function and satis"es the 1-out-of-N rule, i.e. the competitive
constraint. Restated, the C

�
and C

�
energy terms are handled explicitly. The resulting

energy function for CHNN is highlighted as follows:

E"

C
�
2

�
�
���

�
�
���

�
�
���

�
�

����
����

�
�

����

<
���
<

�����
#

C
�
2

�
�
���
�

�
�
���

�
�
���

<
���

!P
��

�

#

C
�
2

�
�
���

�
�
���

�
�
���

<
���

G�
���

H(G
���
)

#

C
�
2

�
�
���

�
�
���

�
�
���

�
�

����
����

�
�

����
����

�
�
���

<
���

R
��
<

�����
R

���
. (5)

The resulting energy function makes it apparent that this must be an appropriate
Lyapunov function. Comparing Eq. (2) with Eq. (5) makes it possible to determine
synaptic interconnection strength, =

	
����
, and the bias input, �

���
, as illustrated

below:

=
	
����

"!C
�
�(x, i)(1!�(y, j))!C

�
�(x, i)

!C
�
(1!�(x, i))(1!�(y, j))�(z,k)�

�

R
	�

R
��
, (6)

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 183

and

�
	
�

"!C
�
P

�
#

C
�
2

G�H(G)#C
�
k (7)

respectively, where

�(a, b)"�
1 if a"b,

0 if aOb,

is the Kronecker delta function.
Similarly, the total input to the neuron (i, j, k) is obtained based on Eq. (4), rewritten

as follows:

Net
���

"!

�E

�<
���

"�
	

�

�
�

=
	
����
<
	
�

!�
���
.

In the CHNN, a competitive winner-take-all rule is imposed to update the neuron
states. The neurons on the same column of a dedicated processor at a certain time
compete with one another to decide which speci"c job should be the winning neuron.
The neuron that receives the maximum total input is the winning neuron. Accord-
ingly, the output of the winner neuron is set to 1, and the output states of all the other
neurons on the same column are set to 0. The winner-take-all update rule of the
neuron for the ith column is illustrated as follows:

<
	��

"�
1 if Net

	��
"Max

���

Net
���
,

0 otherwise,
(8)

where Net
	��
is the maximum total neuron input, and is equivalent to the dynamic

threshold on a MaCulloch}Pitts neuron [15].
The algorithm of the competitive HNN is summarized as follows:

(1) randomly set the initial neuron states;
(2) de"ne the memory synaptic weights=

��
and threshold values �

�
according

to Eqs. (6) and (7);
(3) apply Eq. (4) to calculate the total neuron input. Impose the winner-take-all

rule as depicted in Eq. (8) to decide the output neuron state based on the
assumed initial value; and

(4) replace the random initial states with the output neuron states obtained in
step (3). Repeat the iterations in steps (3) and (4) iteration until no state
change occurs in any iteration.

Notably, the second step is referred to as the storage (learning) phase, while the
third step is the recalling (searching) phase.

4. Convergence of the CHNN

This section provides a mathematical proof of convergence in the CHNN
for the investigated problem. The simpli"ed CHNN energy function (Eq. (5))

184 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

is shown below for reference:

E"

C
�
2

�
�
���

�
�
���

�
�
���

�
�

����
����

�
�

����

<
���
<
�����

#

C
�
2 �

�
�
���

�
�
���

�
�
���

<
���

!P
��

�

#

C
�
2

�
�
���

�
�
���

�
�
���

<
���

G�
���

H(G
���
)

#

C
�
2

�
�
���

�
�
���

�
�
���

�
�

����
����

�
�

����
����

�
�
���

<
���

R
��
<
�����

R
���
.

The neuron (i, j, k) obtains the total input, i.e. net value, which is as follows (Eq. (9)):

Net
���

"!

�E

�<
���

"!

C
�
2

�
�

����
����

�
�

����

<
������

!C
�
(<

���
!P

�
)

!

C
�
2

G�
���

H(G
���
)!

C
�
2

�
�

����
����

�
�

����
����

�
�
���

R
��
<
�����

R
���
. (9)

For clarity, this energy function is separated into two parts, E
��
and E

�����
. The energy

function can then be represented as follows (Eq. (10)):

E"

C
�
2 �

�
�
���

�
�

����
����

�
�

����
����

<
���
<
�����

#

�
�
���

�
�
���
���

�
�
���
���

�
�

����
���������

�
�

����

<
���
<
������

#

C
�
2 �

�
�
���

(<
���

!P
�
)�#

�
�
���
�

�
�
���
���

�
�
���
���

<
���

!P
��

�

�
#

C
�
2 �

�
�
���

<
���

G�
���

H(G
���
)#

�
�
���

�
�
���
���

�
�
���
���

<
���

G�
���

H(G
���
)�

#

C
�
2 �

�
�
���

�
�

����
����

�
�
���
���

�
�
���

<
���

R
��
<
�����

R
���

#

�
�
���

�
�
���
���

�
�

������

�
�

����
����

�
�

����
���������

�
�
���

<
���

R
��
<
�����

R
����, (10)

E"E
��

#E
�����
.

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 185

The above four<
���
terms related to the neuron represent a process i being executed at

a speci"c processor m and speci"c time n. Restated, <
���
is the neuron on the ith row

(job) and nth column (time) for the speci"c processor m. The "rst energy part, E
��
, is

the summation of the energy term correlating with neuron state <
���
. The second part

is the remainder, that is, E
�����
. Focusing on these terms at the tth iteration, the <

���
is

supposed to be the only active neuron (l,m, n) in the nth column on processorm before
updating, that is

<	�

���

"1

and

<	�

���

"0 for iOl.

Moreover, the neuron (q, m, n) at the (t#1)th iteration is supposed to be the only
neuron activated with the largest total input value following updating, namely

<	��

���

"1

and

<	��

���

"0 for iOq.

The active neuron, based on the winner-take-all update rule, as in Eq. (10), is the one
with the maximum net value on each column in each update, that is

Net
���

"Max
���

Net
���
.

This equation implies that

Net
���

'Net
���
, (11)

where Net
���
and Net

���
are derived from Eq. (9) as follows:

Net
���

"!

C
�
2

�
�

����
����

�
�

����

<
�����

!C
�
(<

���
!P

�
)

(12)

!

C
�
2

G�
���

H(G
���
)!

C
�
2

�
�

����
����

�
�

����
����

�
�
���

R
��
<
�����

R
���

and

Net
���

"!

C
�
2

�
�

����
����

�
�

����

<
�����

!C
�
(<

���
!P

�
)

(13)

!

C
�
2

G�
���

H(G
���
)!

C
�
2

�
�

����
����

�
�

����
����

�
�
���

R
��
<
�����

R
���
.

186 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

Investigating Eq. (10), the total energy di!erence of the neural network, �E, between
the (t#1)th and tth iteration is the same as the E

��
change between the (t#1)th and

tth iteration. �E is displayed as below:

�E"E	��

��

!E	�

��

"

C
�
2 �

�
�

����
����

�
�

����

<	��

���
<
�����

!

�
�

����
����

�
�

����

<	�

���
<
�����

#

�
�
���
���

�
�

����
����

�
�

����

<	��

���
<
�����

!

�
�
���
���

�
�

����
����

�
�

����

<	�

���
<
������

#

C
�
2 �(<	��

���
!P

�
)�!(<	�

���
!P

�
)�

#

�
�
���
���

(<	��

���

!P
�
)�!

�
�
���
���

(<	�

���

!Pi)��
#

C
�
2 �<	��

���
G�

���
H(G

���
)!<	�

���
G�

���
H(G

���
)

#

�
�
���
���

<	��

���

G�
���

H(G
���
)!

�
�
���
���

<	�

���

G�
���

H(G
���
)�

#

C
�
2 �

�
�

����
����

�
�

����
����

�
�
���

<	��

���

R
��
<
�����

R
���

!

�
�

����
����

�
�

����
����

�
�
���

<	�

���

R
��
<
�����

R
���

#

�
�
���
���

�
�

����
���������

�
�

����
����

�
�
���

<	��

���

R
��
<
�����

R
���

!

�
�
���
���

�
�

����
���������

�
�

����
����

�
�
���

<	�

���

R
��
<
�����

R
����. (14)

Since <	��

���

"1, <	��

���

"0(iOq), <	�

���

"1, and <	�

���

"0(iOl), the energy change
di!erence demonstrated in Eq. (14), is rewritten as follows:

�E"

C
�
2 �

�
�

����
����

�
�

����

<
�����

!

�
�

����
����

�
�

����

<
������

#

C
�
2 �(1!P

�
)�!(1!P

�
)�#

�
�
���
��

P�
�
!

�
�
���
��

P�
� �

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 187

#

C
�
2
(G�

���
H(G

���
)!G�

���
H(G

���
))

#

C
�
2 �

�
�

����
����

�
�

����
����

�
�
���

R
��
<
�����

R
���

!

�
�

����
����

�
�

����
����

�
�
���

R
��
<
�����

R
����. (15)

Examining Eq. (15), the C
�
term is rearranged as follows:

C
�
2 �1!2P

�
#�P�

�
#

�
�
���
���

P�
� �!1#2P

�
!�P�

�
#

�
�
���
���

P�
� ��

"C
�
(P

�
!P

�
). (16)

Subtracting Eq. (12) from Eq. (13) yields the following:

Net
���

!Net
���

"

C
�
2 �

�
�

�����
����

�
�

����

<
�����

!

�
�

�����
����

�
�
��

<
������

#C
�
(P

�
!P

�
)#C

�
#

C
�
2
(G�

���
H(G

���
)!G�

���
H(G

���
))

#

C
�
2 �

�
�

�����
����

�
�

�����
����

�
�
�

R
��
<
�����

R
���

!

�
�

�����
����

�
�

�����
����

�
�
�

R
��
<
�����

R
����. (17)

Accordingly, the energy changes between the neuron update equal the net value
change minus C

�
. That is

�E"Net
���

!Net
���

!C
�
.

Clearly, the above equation implies that the energy di!erence in the update is
negative, that is �E(0. Restated, the energy function decreases with each iteration.
Hence, the system is convergent during network evolution. Apparently, this energy
function is an appropriate Lyapunov function.

5. Simulation examples and results

Small-scale shared-memory multiprocessors are commonly used in a workgroup
environment where multiprocesses are executed concurrently while sharing processors

188 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

Table 1
Weighting factor of competitive HNN

Constants for HNN
C

�
C

�
C

�
C

�

4.0 1.0 3.0 1.0

Table 2
Resource requested matrix (cases 1 and 2)

R
�

R
�

R
�

Process 1 1 0 0
Process 2 0 0 1
Process 3 0 1 0
Process 4 1 0 0

Table 3
Timing constraints matrix (cases 1 and 2)

Time required Time limit

Process 1 4 6
Process 2 3 4
Process 3 3 6
Process 4 2 3

Table 4
Initial states for CHNN neural network (case 1)

1 2 3 4 5 6

Machine 1
Process 1 1 0 1 0 0 0
Process 2 0 1 0 1 0 1
Process 3 1 0 0 0 1 1
Process 4 0 1 1 0 1 0

Machine 2
Process 1 1 0 1 0 0 0
Process 2 1 0 1 0 0 1
Process 3 0 1 0 1 0 1
Process 4 1 0 0 0 0 0

and other system resources. The simulations consider classes of scheduling problems
such as the display system described in the introduction. Additionally, signi"cant
portions of the energy curves during neural network evolution were also shown. Table
1 de"nes the constants of the energy function in Eq. (5). Two sets of resource and
timing constraints and various di!erent initial neuron states were applied to the
simulations. Tables 2 and 3 list the resource and timing constraints, respectively. This
simulation involves scheduling four processes (jobs) in two processors (machines).
Tables 4 and 5 list the initial states of cases 1 and 2, and Figs. 2 and 3
illustrate the resulting schedule of cases 1 and 2, respectively. Meanwhile, Fig. 4
displays the energy revolution for these two cases. Additionally, a second scheduling
problem with "ve processes and two processors was also simulated. Tables 6 and 7
display the corresponding resource and timing constraint matrices used for this
second scheduling problem. Moreover, di!erent initial conditions are simulated to
better understand the response of the neural network to the scheduling problem.
Tables 8, 9 and 10 display the di!erent initial conditions of cases 3}8, while Figs. 5 and
6 present the scheduling results for cases 3 and 4. Fig. 7 illustrates the same schedule
result from cases 7 and 8. Furthermore, Fig. 8(a) demonstrates the energy curves
during neural network revolution for cases 3}8. Additionally, Fig. 8(b) represents
a signi"cant portion of energy curves for cases 3 and 4, while Fig. 8(c) contains the
interesting portion of the energy curves for cases 5}8.

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 189

Table 5
Initial states for CHNN neural network (case 2)

1 2 3 4 5 6

Machine 1
Process 1 0 0 0 1 0 1
Process 2 1 0 1 0 1 0
Process 3 1 1 0 0 0 1
Process 4 0 1 0 1 1 0

Machine 2
Process 1 0 0 0 1 0 1
Process 2 1 0 0 1 0 1
Process 3 1 0 1 0 1 0
Process 4 0 0 0 0 0 1

Table 6
Resource requested matrix (cases 3}8)

R
�

R
�

R
�

R
�

Process 1 1 0 0 0
Process 2 0 1 0 0
Process 3 0 0 1 0
Process 4 0 0 0 1
Process 5 1 0 0 1

Table 7
Timing constraints matrix (cases 3}8)

Time required Time limit

Process 1 2 3
Process 2 5 8
Process 3 3 4
Process 4 4 8
Process 5 2 5

Table 8
Initial states for CHNN neural network (case 3)

1 2 3 4 5 6 7 8

Machine 1
Process 1 1 0 1 0 0 0 1 0
Process 2 0 1 0 1 0 1 0 0
Process 3 1 0 0 0 1 1 1 1
Process 4 0 1 1 0 1 0 0 0
Process 5 0 1 0 1 0 1 0 1

Machine 2
Process 1 1 0 1 0 1 0 1 1
Process 2 1 0 1 0 0 1 0 0
Process 3 0 1 0 1 0 1 0 1
Process 4 1 0 0 0 0 0 1 0
Process 5 0 0 0 0 1 1 1 1

6. Discussion and conclusions

HNN uses the quadratic energy function, which results in the quadratic cost of
the interconnection network and hence poor scaling property. The winner-take-all
mechanism eliminates the constraint terms in the energy function, simplifying the
network by reducing the interconnections among neurons [11]. Hence, CHNN can
help overcome the scaling problem. This work illustrated an approach to mapping the
problem constraint into the energy function of the competitive Hop"eld neural
network so as to resolve the multi-constraint schedule problem. The energy function
proposed herein works e$ciently and can be applied to investigating certain schedul-
ing problems, such as problems in which processes are executed concurrently with
asynchronous shared-memory communication.

190 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

Table 9
Initial states for CHNN neural network (case 4)

1 2 3 4 5 6 7 8

Machine 1
Process 1 0 1 0 0 0 1 0 1
Process 2 0 0 1 0 1 0 1 0
Process 3 1 1 1 1 0 0 0 1
Process 4 0 0 0 1 0 1 1 0
Process 5 1 0 1 0 1 0 1 0

Machine 2
Process 1 1 1 0 1 0 1 0 1
Process 2 0 0 1 0 0 1 0 1
Process 3 1 0 1 0 1 0 1 0
Process 4 0 1 0 0 0 0 0 1
Process 5 1 1 1 1 0 0 0 0

Table 10
Initial states for CHNN neural network: case 5,
a"0, b"0; case 6, a"1, b"0; case 7, a"0,
b"1; case 8, a"1, b"1

1 2 3 4 5 6 7 8

Machine 1
Process 1 a a a a a a a a
Process 2 a a a a a a a a
Process 3 a a a a a a a a
Process 4 a a a a a a a a
Process 5 a a a a a a a a

Machine 2
Process 1 b b b b b b b b
Process 2 b b b b b b b b
Process 3 b b b b b b b b
Process 4 b b b b b b b b
Process 5 b b b b b b b b

Fig. 2. Simulation results of case 1.

Fig. 3. Simulation results of case 2.

Simulation results demonstrate some signi"cant consequences for CHNN and the
features of CHNN when applied to the scheduling domain examined herein, as
follows:

(1) Randomly assigning the initial states can obtain feasible schedules for the
investigated scheduling problem.

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 191

Fig. 4. Energy evolution of cases 1 and 2.

Fig. 5. Simulation results of case 3.

Fig. 6. Simulation results of case 4.

Fig. 7. Simulation results of cases 7 and 8.

192 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

Fig. 8. Energy function of cases 3}8.

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 193

(2) Although larger setting values of initial states imply larger initial energy values,
those energies (errors) decrease dramatically to nearly the same energy value once the
CHNN neural network starts updating. Again, random initial state assignment is
recommended.
(3) The rate of convergence is initial-state dependent, as shown in cases 3}8 of

Tables 8, 9 and 10. Generally, the initial states with a random distribution arrive at
a rapid and sound solution, as in cases 1, 2, 3 and 4
(4) The entailed synaptic weight matrix in Eq. (6), although symmetric (i.e.
=

	
����
"=

���	
�
), has a self-feedback interconnection, implying=

	
����
O0. Thereby,

the networkmay oscillate during network evolution [18,20]. Consequently, a solution
is not guaranteed, causing inevitable oscillation. Simulation results illustrate that
cases 5 and 6 involve unstable revolutions and no solutions are obtained. Meanwhile,
Figs. 1, 7 and 8 oscillated to the convergence, as displayed in Figs. 4 and 8. In [21],
Takefuji and Lee proposed a hystersis binary neuron model to e!ectively suppress
the oscillatory behavior of neural dynamics for solving combinatorial optimization
problems.

Moreover, weighting factor determination is an intrinsic shortcoming of HNN, and
the simulations also encounter this drawback. However, the set of weight matrices
used in our simulation as listed in Table 1 is not unique. Meanwhile, another
valid weight matrix containing C

�
"1.3, C

�
"0.3, C

�
"1.5, and C

�
"1.2 was

also simulated. Di!erent sets of weighting factors produce di!erent neural network
revolutions.
The Hop"eld neural network is known to frequently trap to a local minimum after

the network is stabilized. The simulated annealing technique can e!ectively obtain
a global minimum capable of escaping from the local minimum. However, this
approach requires more iterations. An important feature of a scheduling algorithm is
its e$ciency or performance, i.e., how its execution time grows with problem size. The
parameter most relevant to the time a neural network takes to "nd a solution is the
number of iterations needed to converge to a solution. According to simulation
results, this CHNN requires an average of 5}15 iterations to converge. When initial
values are randomly set, a minimum of 5 iterations is needed to converge to a solution.
Each iteration involves updating every column of the competitive Hop"eld neural
network. The number of neurons for the proposed neural network is (NM¹), and the
computational time for each iteration is equal to the total neurons (NM¹) multiplied
by the computation time for each neuron (proportional to (NM)). Consequently, this
algorithm results in a O(N�M�¹) complexity. Restated, the execution time required
for each iteration is proportional to O(N�M�¹). For example, in some case, one
machine contains 20 jobs and each job requires one unit time. Then, 20! distinct
sequences may exist, where 20!"2432902008176640000. Finding the solution using
exhaustive search is impractically slow on an Intel celeron 450 desktop PC used in our
simulation. Instead, using CHNN, this CHNN consists of 20�1�20 neurons and 15
iterations, the most required to "nd the solution. The computation time of each
neuron is proportional to 20 times one-state computation (interconnection, net value,
and others computation). 20�20�20�15"120,000 state computations may exist

194 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

for the CHNN algorithm, and 10 more minutes may be required to converge on our
simulation platform. Furthermore, when the problem involves 100 jobs on "ve
processors, then 375,000,000 state computations are necessary, meaning it will take
around 1.5 months to "nd the solution. Restated, "nding the solution for a very
large-scale system (very large N and/or very largeM) might require an unacceptably
long time. Thus, for large-scaled cases, the scaling problem will become a drawback of
the proposed model. A future work should examine how to reduce the complexity in
solving the scheduling problems.
This work focuses mainly on the problem of resource utilization. For practical

implementation, the problem can be extended to involve the temporal relationship
of the resources required for each job. Restated, each job would require di!erent
resources in a speci"c order at di!erent times. Correspondingly, the con-
structed energy function in this work can be modi"ed by adding additional
energy terms to satisfy additional requirements. A notion resembling the priority
scheduling constraint may be involved. A future work should address this issue more
thoroughly.

Acknowledgements

The authors would like to gratefully acknowledge helpful comments and valuable
assistance from both anonymous reviewers.

References

[1] T.M. Willems, J.E. Rooda, Neural networks for job-shop scheduling, Control Eng. Practice 2 (1)
(1994) 31}39.

[2] Y.P.S. Foo, Y. Takefuji, Integer linear programming neural networks for job-shop scheduling, IEEE
International Conference on Neural Networks, Vol. 2, 1998, pp. 341}348.

[3] Chang-shui Zhang, Ping-fan Yan, Tong Chang, Solving job-shop scheduling problem with priority
using neural network, IEEE International Conference on Neural Networks, 1991, pp. 1361}1366.

[4] C. Cardeira, Z. Mammeri, Neural networks for multiprocessor real-time scheduling, Proceedings of
the Sixth Euromicro Workshop on Real-Time Systems, 1994, pp. 59}64.

[5] A. Hanada, K. Ohnishi, Near optimal jobshop scheduling using neural network parallel computing,
International Conference on Proceedings of the Industrial Electronics, Control, and Instrumentation,
Vol. 1, 1993, pp. 315}320.

[6] Jeon Gue Park, JongMan Park, Dou Seok Kim, Chong Hyun Lee, Sang Weon Suh, Mun Sung Han,
Dynamic neural network with heuristic, IEEE International Conference on Neural Networks, Vol. 7,
1994, pp. 4650}4654.

[7] Yueh-Min Huang, Ruey-Maw Chen, Scheduling multiprocessor job with resource and timing con-
straints using neural network, IEEE Trans. System Man Cybernet. Part B 29 (4) (1999) 490}502.

[8] J.J. Hop"eld, D.W. Tank, Neural computation of decision in optimization problems, Biol. Cybernet.
52 (1985) 141}152.

[9] J.M. Gallone, F. Charpillet, F. Alexandre, Anytime scheduling with neural networks, Proceedings of
the INRIA/IEEE Symposium on Emerging Technologies and Factory Automation, Vol. 1, 1995,
pp. 509}520.

R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196 195

[10] N.M. Nasrabadi, C.Y. Choo, Ho"eld network for stereo vision correspondence, IEEE Trsns. Neural
Networks 3 (1992) 5}13.

[11] M.W. Dixon, G.R. Cole, M.I. Bellgard, Using the Hop"eld network with mean "eld annealing to
solve the shortest path problem in a communication network, International Conference on Neural
Networks, Vol. 5, 1995, pp. 2652}2657.

[12] P.C. Chung, C.T. Tsai, E.L. Chen, Y.N. Sun, Polygonal approximation using a competitive Hop"eld
neural network, Pattern Recognition 27 (1994) 1505}1512.

[13] J.S. Lin, K.S. Cheng, C.W. Mao, A fuzzy Hop"eld neural network for medical image segmentation,
IEEE Trans. Nucl. Sci. NS-43 (4) (1996) 2389}2398.

[14] T. Uchiyama, M.A. Arbib, Color image segmentation using competitive learning, IEEE Trans.
Pattern Anal. Mach. Intell. 16 (12) (1994) 1197}1206.

[15] K. Lee, Y. Takefuji, N. Funabiki, A parallel improvement algorithm for the biparties subgraphy
problem, Case Western Reserve University, CAISR Technical Report TR91-105, 1991.

[16] R.M. Chen, Y.M. Huang, Multiconstraint task scheduling in multiprocessor system by neural
network, Proceedings of the IEEE Tenth International Conference on Tools with Arti"cial Intelli-
gence, 1998, pp. 288}294.

[17] R.M. Chen, Y. M. Huang, Multitask scheduling by fuzzy Hop"eld neural Network, Sixth National
Conference On Fuzzy Theory and Its Applications, 1998, pp. 231}236.

[18] J.J. Hop"eld, D.W. Tank, Computing with neural circuits: a model, Science 233 (1986) 625}633.
[19] G. Bilbro, R. Mann, T. Miller, W. Snyder, D.E. Van den Bout, M. White, Mean "eld annealing and

neural networks, in: D.S. Touretzky (Ed.), Advances in Neural Information Processing System,
Morgan Kaufmann, San Mateo, CA, 1989, pp. 91}98.

[20] M. Takeda, J.W. Goodman, Neural networks for computation: number representation and program-
ming complexity, Appl. Opt. 25 (1986) 3033}3046.

[21] Y. Takefuji, K.C. Lee, An arti"cial hystersis binary neuron: a model suppressing the oscillatory
behaviors of neuron dynamics, Biol. Cybernet. 64 (1991) 353}356.

Ruey-MawChenwas born in Taiwan, R.O.C., in 1960. He received the B.S. and the
M.S. degrees in engineering science from National Cheng Kung University,
Taiwan, R.O.C., in 1983 and 1985, respectively. Currently, he is a Ph.D. student in
the Department of Engineering Science of the same university.
From 1985 to 1994, he was a senior engineer on avionics system design at

Chung Shan Institute of Science and Technology (CSIST). Since 1994, he is
a technical sta! at National Chin-Yi Institute of Technology (NCIT). His research
interests include scheduling, digital image process, and neural network.

Yueh-MinHuangwas born in Taiwan, R.O.C., in 1960. He received the B.S. degree
in engineering science from National Cheng-Kung University, Taiwan, R.O.C., in
1982, and both the M.S. and Ph.D degrees in electrical engineering from the
University of Arizona, Tucson, AZ, in 1988 and 1991, respectively.
Since 1991, he has been with the Department of Engineering Science, National

Cheng-Kung University, where he is a professor. His research interests include
distributed multimedia systems, data mining, and real-time systems.
Dr. Huang is a member of IEEE Computer Society, the American Association

for Arti"cial Intelligence, and the Chinese Fuzzy Systems Association. He was
a winner of the 1996 Acer Long-Term Award for Best M.S. Thesis Supervision.

196 R.-M. Chen, Y.-M. Huang / Neurocomputing 37 (2001) 177}196

